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ZEROES OF DIRICHLET L-FUNCTIONS 
AND IRREGULARITIES 

IN THE DISTRIBUTION OF PRIMES 

CARTER BAYS AND RICHARD H. HUDSON 

ABSTRACT. Seven widely spaced regions of integers with 14,3(X) < 74,1 (X) 

have been discovered using conventional prime sieves. Assuming the general- 
ized Riemann hypothesis, we modify a result of Davenport in a way suggested 
by the recent work of Rubinstein and Sarnak to prove a theorem which makes 
it possible to compute the entire distribution of 14,3(X) - 74,1(X) including 
the sign change (axis crossing) regions, in time linear in x, using zeroes of 
L(s, X), X the nonprincipal character modulo 4, generously provided to us by 
Robert Rumely. The accuracy with which the zeroes duplicate the distribution 
(Figure 1) is very satisfying. The program discovers all known axis crossing 
regions and finds probable regions up to 101000. Our result is applicable to a 
wide variety of problems in comparative prime number theory. For example, 
our theorem makes it possible in a few minutes of computer time to compute 
and plot a characteristic sample of the difference li(x) - 7r(x) with fine resolu- 
tion out to and beyond the region in the vicinity of 6.658 x 10370 discovered 
by te Riele. This region will be analyzed elsewhere in conjunction with a proof 
that there is an earlier sign change in the vicinity of 1.39822 x 10316. 

1. INTRODUCTION 

A rather vague comment made by P. L. Chebyshev in 1853 regarding an excess 
of primes of the form 4n + 3 over those of the form 4n + 1 gave rise to comparative 
prime number theory. In 1957, Leech [10] discovered the first two regions of integers 
with 7r4,3(X) < 7r4,1(x). Subsequent regions were discovered by D. Lehmer and Bays 
and Hudson, see [1], [2]. A seventh region begins at x = 1,488,478,427,089, and 
was found by Bays and Hudson in 1996. 

In this paper we modify a result of Davenport, making it possible for us to 
compute, using the generalized Riemann hypothesis, the irregularities in the dis- 
tribution of primes in all arithmetic progressions and the famous sign changes of 
7r(x) - li(x), where 

li(x) = im{ji log t }' 

using the zeroes of the real non-principal Dirichlet L-functions modulo q (and the 
zeroes of ((s)) in linear time (more precisely, the time is (r(nx), where n is the 
number of zeroes and x is the length of the interval being searched). Our theorem 
is clearly useful for a wide variety of problems in comparative prime number theory, 
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including theoretical computations of logarithmic densities for Chebyshev's bias for 
all moduli for which zeroes have been computed, as well as the sign changes of 
li(x) - w(X). 

In this note we show that all known regions with 7W4,3(X) < ir4,1(x) and, in 
fact, the entire distribution function 74,3 (X) - w4,1 (x) can be duplicated with great 
accuracy from the zeroes of L(s, X), X the nonprincipal character modulo 4. Figure 
1 clearly depicts this fact, giving all axis crossing regions which must occur if the 
generalized Riemann hypothesis holds and finding that they do, in fact, coincide 
with all known regions. The first undiscovered region, near 9 trillion, could be 
verified by direct computation in a few weeks on a fast computer. The computation, 
using our theorem, requires a few seconds. We have computed theoretical crossings 
for x up to 101000. In Figure 2 we display values where 7W4,3(X) - 7r4,1(X) is near a 
minimum locally, using Theorem 1, and compare them to known values; see [2]. 

We are deeply indebted to Robert Rumely for providing us with the zeroes of 
the L-functions. We have high confidence in the accuracy of his data, even though 
he has pointed out to us that that his computational method for producing zeroes 
has not been rigorously proven. Andrew Odlyzko also provided us with 101, 052 
zeroes of ((s). 

The major contribution of this note is to provide the means for anyone with a 
reasonable knowledge of programming to study the irregularities in the distribution 
of primes in arithmetic progressions and the sign change regions of 7r(x) - li(x), 
obtaining results (under the GRH) which otherwise would not be obtainable. For 
example, using our algorithm, it takes thirty minutes to search for sign changes of 
7r(x) - li(x) for x < 10400. The program rediscovers the sign change region in the 
vicinity of 6.658 x 10370 found by te Riele [12]. These results will be refined and 
presented elsewhere, and a proof given that an earlier sign change does, in fact, 
occur in the vicinity of 1.39822 x 10316 (see [3]). 

2. THE ANALYTIC THEORY 

Let b = 20Pj1 ... P k and let 'y(b) = 2k+3-1, where I - 1 if aeo = 0 or 
1, 3 = 2 if aeo = 2, and , - 3 if ao > 3. Then -y(b) denotes the ratio of quadratic 
non-residues of b to quadratic residues [11, p. 167]. Let EN(x,b) and ER(x,b) 
denote respectively the number of primes < x in all progressions bn + c with c a 
quadratic non-residue of b and in all progressions bn + c' with c' a quadratic residue 
of b. Although our results generalize to composite moduli not having a primitive 
root (with EN(x,b) - ER(x, b) replaced by EN(x,b) - 'y(b)ER(x, b)), we assume 
for simplicity here that b = 4, q', or 2qa, where q is an odd prime. Assuming the 
generalized Riemann hypothesis, we prove the following: 

Theorem 1. For b = 4, qa, or 2qa, x > 2, T > 1, we have under the generalized 
Riemann hypothesis, 

(2.1) 
EN(x, b)- ER(x, b) 

1 1 
/2w() z sin-Y log x x(oxlg)2 =F 7(xl 2 )2 + 7r (x'~ 2 )x + ,T 

x (log x + log2T) 
2 

0<-~~~<T ~T (log x) l o'g2 ~)' 
where 'y runs over the imaginary parts of the non-trivial zeroes of L(s, X), where X 
is the real nonprincipal character. 
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Proof. The proof is a straightforward adaptation of Davenport [5, p. 101] as pre- 
sented by Rubinstein and Sarnak [13, p. 181] with minor modifications. In partic- 
ular, (2.4) and (2.12) of [13] are essential. 

Following Hudson [7], we normalize the difference on the left-hand-side of (2.1) 
using 2/wr(xl) rather than (logx)/xl. Bays and Hudson have observed in [3], [6], 
and [7, p. 563] that terms after the first in 

1 1 1 
li X2 X2 2x2 8x 48x2 

2 log ? log2? X log3 log4 x 

2k2-l(k2 - 1)!x2 X (x2 

log k2 x 
+ 

\logk2?+1xJ' 

cannot be ignored in numerical problems in comparative prime number theory 
requiring precision. 

Let X be the real nonprincipal Dirichlet character and define 

-2 2 
(2.2) H(x) = ZX(P) = 1 (N(x,b)- R(x,b)), 

7T (x ) P<x -F(x 2) 

and in the aptly named "b 1=" case [13, p. 175], we take 

(2.3) H(x)= 1 (li(x)-7r(x)). 
7r(x ) 

Assume the generalized Riemann hypothesis is true, and let -y run over the imag- 
inary parts of the non-trivial zeroes of L(s, x) if b = 4, q', or 2qa, and over the 
non-trivial zeroes of ((s) in the "b 1"case (in the upper half-plane). 

Appealing to Rubinstein and Sarnak ((2.12) on page 181 of [13]), we have 

H(x)=I+ I+iy +<q? T +logx} 

Setting x = ey and appealing to Davenport [5, p. 101] (see also (2.4) of [13]), we 
have 

y 4 1 

so that (since log2 xT = (log x + log T)2 = (y + log T)2) 

H(ey) 1+2 
sn 
sinyy +?(e(y?+logT)2 + I) 

or, equivalently, 

(2.4) H(x)=1+2 sin y log x 
)(x(logx jlogT +) l 

Finally, multiplying by (7r(x ))/2, we have at once (2.1), completing the proof of 
the theorem. D 
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3. THE COMBINATORIAL THEORY 

Unfortunately, the analytic theory alone does not readily give us (9 constants 
which are useful in numerical work. We also do not have the luxury of fixing x and 
letting T -? oc so that the first part of the 0-term in (2.1) vanishes. Fortunately, 
we have a combinatorial theory, Hudson and Bays [6, pp. 85-91], to which to appeal. 
To the extent that there are no biases present apart from the Chebyshev bias, so 
that oscillations of 

ZN(x, b)-ER (x, b) about w(x2 )/2 

can be expected to be equidistributed (the oscillations above 7r(x2 )/2 effectively 
cancelling the oscillations below [6, p. 88]), the error in (2.1) arises from the 
x 2/ log2 x part of the 0-term. Indeed, as pointed out to the authors by Rubinstein, 
the oscillating term summed over all nonprincipal characters, which denotes the de- 
marcation from the mean [13, p. 1791, is ((x2/ log2 x), though the constant is not 
known. If, however, the oscillations of EN (x, b) - ER(x, b) are evenly distributed 

about 7r(x )/2, and we use the approximation 7r(x) ,- li x2, we have from (5.11) 
of [6] that 

1 .~ 1 2x2 4x2 16x2 96x2 

(3.1) lr(x2) logX o ? log2 x ? log3x ? (log X)4 
2 +2(k- 1)!x12 (pK (2) 

(log x) 
k (log X)k+l 

and the implied constant c in (2.4) associated with the 1/ log x term should be close 

to 1, assuming that the 7r(x ')/2 term arising in both the combinatorial and analytic 
theory is the dominant term. Terms after the first on the right-hand-side of (3.1), 
and lower order terms arising from Riemann's formula and the analogous formula 
for the modulus 4 (see, e.g. [9]), since they are at most 4x /log2x, contribute so 
little that the values found in Figure 2 applying Theorem 1 with c= 1 and 12,000 
zeroes of L(s, X) agree closely with values computed using the sieve discussed in 
[4]. Using this as our working hypothesis, we computed Figures 1 and 2. 

Remark. We are deeply indebted to the referee for pointing out several deficien- 
cies in the original manuscript. Since the manuscript was first submitted, we have 
strengthened the numerical evidence supporting the choice of c = 1 for the con- 
stant associated with the 1/ log x part of the (9 term in (2.4) in several ways. The 
computed value for WF4,1 (X) - 74,3 (x) at x = 18, 699, 356, 321 differs from the theo- 
retical model by only 24 (-2719 versus -2743), and even this difference is reduced 
if terms after the second in (3.1) are taken into account. Even more significantly, 
we have computed the Chebyshev bias for the modulus 4 using the above model 
and, at 10218, find that (after including a small correction factor recently found by 
Rubinstein and Hudson) the convergence of the bias to .9959..., see [13, p. 188], 
agrees to four decimal places. The result and similar bias findings will be presented 
in a forthcoming paper. 
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10,000 1,000.000 100,000,000 10,000.000,000 

100,000 10,000,000 1.000,00(,000 100,000,000,000 

26,861 12,306,137 1,309.280,709 
616,841 951,784,481 18.465,126,293 

FIGURE 1. The upper graph was found in a few minutes using 
Theorem 1 with 12,000 zeroes of L(s, x) for each point. The lower 
graph required an overnight run and produces exact results with 
the "Segmented Sieve of Eratosthenes" (see [4]). It gives the initial 
numerical values for each crossing region, and plots each point as 
closely as possible to its actual numerical value, which, of course, is 
beyond the resolution of the plot. Note the remarkable similarity 
of the two plots. For each power of ten interval, approximately 
2,300 points were plotted. Note: The scale is logarithmic. Thus, 
the axis crossing at, for example, 616,841 in Figure 1 should occur, 
as it does, approximately 79% of the way from the mark at 100,000 
to the mark at 1,000,000, since the common logarithm of 616,841 
is 5.79017 . 

AXIS CROSSING REGION MINIMUM VALUES 
As exactly determined [2] As found by applying Theorem 1 

using 12,000 zeroes of L(s, X) 
26861 26859 
623681 623705 
12366589 1.2366 x i07 
951867937 9.5199 x 108 
6345026833 6.3452 x 109 
18699356321 1.8696 x 1010 
1,488,478,427,089 1.4898 x 1012 

not known 9.3190 x 1012 

FIGURE 2. This table examines the minimum values at the first 
few axis crossing regions for ir4,3(X) - 7r4,1(x). The left column 
gives the exact values of these local minima as given in [2]. The 
"not known" entry refers to the axis crossing region that is in the 
vicinity of 9.3 x 1012. This region was one of many additional ones 
that have been found using Theorem 1. 



866 CARTER BAYS AND RICHARD H. HUDSON 

REFERENCES 

[1] Carter Bays and Richard H. Hudson, On the fluctuations of Littlewood for primes of the 
form 4n+1, Math. Comp. vol. 32 (1978), pp. 281-286. MR 57:16174 

[2] , Numerical and graphical description of all axis crossing regions for the moduli 4 
and 8 which occur before 1012, Int. J. Math. & Math. Sci. , vol. 2(1979), pp. 111-119. MR 
80h: 10003 

[3] , A new bound for the smallest x with ir(x) > li(x), to appear in Math. Comp. 
[4] , The segmented sieve of Erastosthenes and primes in arithmetic progressions to 1012, 

BIT, vol. 17, (1977), pp. 121-127. MR 56:5405 
[5] H. Davenport, Multiplicative Number Theory (2nd ed.), Graduate Texts in Mathematics, vol. 

74, Springer, Berlin, 1980. MR 82m:10001 
[6] Richard H. Hudson, The mean behavior of primes in arithmetic progressions, J. Reine 

Angew. Math., vol. 296 (1977),pp. 80-99. MR 57:255 
[7] , Averaging effects on irregularities in the distribution of primes in arithmetic pro- 

gressions, Math. Comp., vol. 44 (1985), pp. 561-571. MR 86h:11074 
[8] J. Kaczorowski, Results on the distribution of primes, J. Reine Angew. Math. 446 (1994), 

89-113. MR 95f: 11070 
[9] , On the distribution of primes mod 4, Analysis 15 (1995), 159-171. MR 96h:11095 
[10] John Leech, Note on the distribution of prime numbers, J. London Math. Soc., vol. 32 (1957), 

pp. 56-58. MR 18:642d 
[11] Karl K. Norton, Upper bounds for k-th power coset representatives modulo n, Acta Arith., 

vol. 15 (1968/69) pp. 161-179. MR 39:1419 
[12] Herman te Riele, On the sign change of the difference ir(x) - li(x), Math. Comp., vol 48 

(1986), pp. 667-681. MR 88a:11135 
[13] Michael Rubinstein and Peter Sarnak, Chebyshev's Bias, Experimental Mathematics, vol. 3 

(1994), pp. 173-197. MR 96d:11099 
[14] Daniel Shanks, Quadratic residues and the distribution of primes, Math. Comp., vol 13 

(1959), pp. 272-284. MR 21:7186 

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SOUTH 

CAROLINA 29208 
E-mail address: baysOcs. sc. edu 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SOUTH CAR- 

OLINA 29208 
E-mail address: hudson0math. sc. edu 


	Cit r432_c436: 


